main image

Google

 
shadow shadow

Welcome to Worlds Fastest Cars New website

Top fuel dragster

Videos from our sponsors please watch to help support this website more car vids below

 


Top fuel dragster

Top-Fuel Racing refers to a class of drag racing in which the cars are run on a maximum of 85% nitromethane and about 15% methanol also known as racing alcohol, instead of gasoline. The nitromethane used to power the engines of top fuel dragsters costs about US$30 per U.S. gallon (US$8/L). Top Fuel dragsters use between 10 and 12 U.S. gallons (38 to 45 L) of fuel for a complete pass, including the burnout, backup to the starting line, and quarter-mile run. The engine generates about 3.4 times as much power as a similar displacement engine running gasoline.

These cars compete in a 1/4 mile (0.4 km) race and complete it in less than 4.5 seconds at upwards of 330 mph (530 km/h). A Top Fuel dragster accelerates from 0 to 100 mph (160 km/h) in less than 0.8 second, subjecting the driver to a force about 5.7 times his weight. This acceleration takes less than a tenth of the time needed by a production Porsche 911 Turbo to reach the same speed. A fuel dragster can exceed 280 mph (450 km/h) in just 660 feet (0.2 km). The full race distance is 1/4 of a mile, 1320 feet. For further information and standards for drag-racing, including safety requirements, see NHRA

The engine used to power a Top Fuel drag racing car has its roots in the second generation Chrysler Hemi 426 "Elephant Engine" made 1964-71. Although the Top Fuel engine is built exclusively of aftermarket parts, it retains the basic configuration with two valves per cylinder activated by pushrods from a centrally-placed camshaft. The engine has hemispherical combustion chambers, a 90 degree V angle; 4.8" bore pitch and a 5.4" camshaft height. The configuration is identical to the overhead valve, single camshaft-in-block "Hemi" V-8 engine which became available for sale to the public in selected Chrysler Corporation (Dodge, DeSoto, and Chrysler) automotive products in 1952.

The NHRA competition rules limit the displacement to 500 cubic inch (8193.5 cc). A 4.19" (106.4 mm) bore with a 4.5" (114.3 mm) stroke are customary dimensions. Larger bores have been shown to weaken the cylinder block. Compression ratio is about 6.5:1, as is common on engines with overdriven (the supercharger is driven faster than the crankshaft speed) superchargers.



The block is CNC machined from a piece of forged aluminium. It has press-fitted ductile iron liners. There are no water passages in the block which adds considerable strength and stiffness. Like the original Hemi, the racing cylinder block has a long skirt (to reduce piston "rocking" at the lower limit of piston travel); there are five main bearing caps which are fastened with aircraft-standard-rated steel studs; with additional reinforcing main studs and side bolts. There are three approved suppliers of these custom-made after-market blocks, from which the teams may choose.

The cylinder heads are CNC-machined from aluminum billets. As such, they have no water jackets and rely entirely on the incoming air/fuel mixture for their cooling. The original Chrysler design of two large valves per cylinder is used. The intake valve is made from solid titanium and the exhaust from solid Nimonic 80A or similar. Seats are of ductile iron, beryllium-copper have been tried but its use is limited due to cost. Valve sizes are around 2.45" (62.2 mm) for the intake and 1.925" (48.9 mm) for the exhaust. In the ports there are integral tubes for the push rods. The heads are sealed to the block by copper gaskets and stainless steel o-rings. Securing the heads to the block is done with aircraft-rated steel bolts.
 


The camshaft is billet steel, made from 8620 carbon steel or similar. It runs in five oil pressure lubricated bearing shells and is driven by gears in the front of the engine. Mechanical roller lifters, steel push rods and steel rockers are used to actuate the cams. The rockers are of roller type on the intake side, high pressures on the exhaust limits its use to the intake side only. The steel roller rotates on a steel roller bearing and the steel rocker arms rotates on a titanium shaft within bronze bushings. Intake rockers are billet while the exhausts are investment cast. The dual valve springs are of coaxial type and made out of titanium. Valve retainers are also made of titanium, as are the rocker covers.

Billet steel crankshafts are used; they all have a cross plane a.k.a. 90 degree configuration and runs in five conventional bearing shells. 180 degree crankshafts have been tried and they can offer increased power, even though the exhaust is of open type. A 180 degree crankshaft is also about 10 kg lighter than 90 degree crankshaft, but they create a lot of vibration. Such is the strength of a top fuel crankshaft that in one incident, the entire engine block was split open and blown off the car during an engine failure, and the crank, with all eight connecting rods and pistons, was left still bolted to the clutch.

Pistons are of forged aluminium, 2618 alloy. They have three rings and aluminium buttons retain the 1.156" x 3.300" steel pin. The piston is anodized and Teflon coated to prevent galling during high temperature operation. The top ring is an L-shaped Dykes ring that provides a good seal during combustion but a second ring must be used to prevent oil from entering the combustion chamber during intake strokes as the Dykes-style ring offers less than optimal combustion gas sealing. The third ring is an oil scraper ring whose function is helped by the second ring. The connecting rods are of forged aluminium and do provide some shock damping, which is why aluminum is used in place of titanium, because titanium connecting rods transmit too much of the combustion impulse to the big-end rod bearings, endangering the bearings and thus the crankshaft and block. Each con rod has two bolts, shell bearings for the big end while the pin runs directly in the rod.
 


The supercharger is a 14-71 type roots blower. It has twisted lobes and is driven by a toothed belt. The supercharger is slightly offset to the rear to provide an even distribution of air. Absolute manifold pressure is usually 3.8-4.5 bar, but up to 5.0 bar is possible. The manifold is fitted with a 200 psi burst plate. Air is fed to the compressor from throttle butterflies with a maximum area of 65 sq. in. 45.5 Maximum boost, in PSI, produced by the supercharger at wide-open throttle.

These superchargers are in fact derivatives of General Motors scavenging-air blowers for their two-cycle diesel engines, which were adapted for automotive use in the early days of the sport. The model name of these superchargers delineates their size; i.e. the once commonly used 6-71 and 4-71 blowers were designed for General Motors diesels having six cylinders of 71 cubic inches each, and four cylinders of 71 cubic inches each, respectively. Thus, the currently used 14-71 design can be seen to be a huge increase in power delivery over the early designs.

Mandatory safety rules require a secured Kevlar-style blanket over the supercharger assembly as "blower explosions" are not uncommon. The absence of a protective blanket exposes the driver, team and spectators to shrapnel in the event that nearly any irregularity in the induction of the air/fuel mixture, the conversion of combustion into rotating crankshaft movements, or in the exhausting of spent gasses is encountered.

The oil system has a wet sump which contains 16 quarts of SAE 70 mineral or synthetic racing oil. The pan is made of titanium or aluminium. Titanium can be used to prevent oil spills in the event of a blown rod. Oil pressure is somewhere around 160/170 lb during the run, 200 lb at start up, but actual figures differs between teams.

Fuel is injected by a constant flow injection system. There is an engine driven mechanical fuel pump and about 42 fuel nozzles. The pump can flow 92 gallons/minute at 8000 rpm and 500 PSI fuel pressure. In general 10 injectors are placed in the throttle horn above the supercharger, 16 in the intake manifold and two per cylinder in the cylinder head. Usually a race is started with a leaner mixture, then as the clutch begins to tighten as the engine speed builds, the air/fuel mixture is enriched. As engine speed builds pump pressure the mixture is made leaner to maintain a predetermined ratio that is based on many factors, one of which is primary one of race track surface friction. The stoichiometry of both methanol and nitromethane is considerably greater than that of racing gasoline, as they have oxygen atoms attached to their carbon chains and gasoline does not. This means that a "fueler" engine will provide power over a very broad range from very lean to very rich mixtures. Thus, to attain maximum performance, before each race, by varying the level of fuel supplied to the engine, the mechanical crew may select power outputs barely below the limits of tire traction. Power outputs which create tire slippage will "smoke the tires" and the race is often lost. However, as a testament to never giving up, Cruz Pedregon, a Funny Car driver has won two races, years apart, when his car spun the tires during the run, when the OTHER driver also smoked his tires, and they both proceeded down the track, smoking the tires side by side. It was an amazing spectacle to see once, let alone twice. (This is not to be confused with pre-race tire-spinning which heats that tires and smokily lays down molten rubber, which cools slightly, allowing a maximum traction "run" just moments later.)

The air/fuel mixture is ignited by two 14 mm spark plugs per cylinder. These plugs are fired by two 44-amp magnetos. Normal ignition timing is 58-65 degrees BTDC. (This is dramatically greater spark advance than in a gasoline engine as "nitro" and alcohol burn far slower.) Directly after launch the timing is typically decreased by about 25 degrees for a short time as this gives the tires time to reach their correct shape. The ignition system limits the engine speed to 8400 rpm. The ignition system provides initial 50,000 volts and 1.2 amps. The long duration spark (up to 26 degrees) provides energy of 950 millijoules. The plugs are placed in such a way that they are cooled by the incoming charge. The ignition system is not allowed to respond to real time information (no computer-based spark lead adjustments), so instead a timer-based retard system is used.
 


The engine is fitted with open exhaust pipes, 2.75" in diameter and 18" long. These are made of steel and fitted with thermocouples for measuring of the exhaust temperature. They are called "zoomies" and exhaust gases are directed upward and backwards. Exhaust temperature is about 260 °C at idle and 980 °C by the end of a run. A night run provides visual excitement with slow-burning nitromethane flames many feet above this screaming spectacle of acceleration. A "good run" is over in just 4.5 seconds, the noise ends, and braking parachutes are seen in the distance, after a speed of over 325 miles per hour has been reached.

The engine is warmed up for about 80 seconds. After the warm up the valve covers are taken off, oil is changed and the car is refueled. The run including tire warming is about 100 seconds which results in a "lap" of about three minutes. After each lap, the whole engine is taken apart and gone through, and much of it is replaced.


Performance
Power output of these engines is most likely somewhere between 6000 and 8000 horsepower (approximately 4500-6000 kilowatts). This is calculated from performance as these engines aren't tested on a dynamometer. This would suggest a torque output of 5100-6750 Nm (3760-4980 lb-ft) and also a brake mean effective pressure of 80-100 bar.


Engine weight
Block with liners 85 kg
Heads 18 kg each
Crankshaft 37 kg
Complete engine 225 kg.

horizontal bar

Worlds Fastest Cars © 2006

               500,000 hits a year

HomeA to Z of CarsFORUMWorlds Fastest Cars News •  Our Shop

0-60 timesContactReport Broken linkSite MapLINKS

Website Design by Mark Williams